

Reverb Time - T20

- RT60 = time for sound to decay 60 dB
- T20 = RT60 time based upon the first 20 dB of decay
- Start @ -5dB
- Linear interpolate from -5 dB to - 25 dB and compute slope
$-\mathrm{T} 60=60 /$ slope (3 X the time to decay 20 dB)

Reverb Time - T30

- RT60 = time for sound to decay 60 dB
- T30 = RT60 time based upon the first 30 dB of decay
-Start @ -5 dB
-Linear interpolate from -5 dB to - 35 dB and compute slope
$-\mathrm{T} 60=60 /$ slope (2 X the time to decay 30 dB)

Reverb Time - T20 \& T30 Comparison

```
1000 Hz Interrupted Noise
```


Good Match

T20 = 1.641 s
$\mathrm{T} 30=1.662 \mathrm{~s}$

$$
\begin{aligned}
& \text { Not as Good Match } \\
& \begin{array}{c}
\text { T20 }=2.088 \mathrm{~s} \\
\text { T30 }=2.390 \mathrm{~s}
\end{array}
\end{aligned}
$$

Reverb Time - Reverse Integration (Schroeder)

Reverse Integration (Schroeder integration) is applied to impulsive measurements

- Start near the end of the decay and integrate backwards in time
- "smooths" the decay and provides clean max level

Reverb Time - BT (Bandwidth Time)

BT = (Filter Bandwidth) * (RT60 time)

- Verify measured decay is acoustic, not instrumentation

BT > 16 \& T > TR

ISO 3382-2(2008) 7.3

| Frequency | $\mathbf{1 / 3}$ Octave | | 1/l Octave | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | TR (ms) | BT | TR (ms) | BT |
| 50.0 Hz | 378 | 4.37 | | |
| 63.0 Hz | 301 | 4.38 | 160 | 7.12 |
| 80.0 Hz | 216 | 3.96 | | |
| 100 Hz | 181 | 4.18 | | |
| 125 Hz | 153 | 4.43 | 86 | 7.63 |
| 160 Hz | 119 | 4.34 | | |
| 200 Hz | 94 | 4.32 | | |
| 250 Hz | 75 | 4.36 | 40 | 7.10 |
| 315 Hz | 55 | 4.04 | | |
| 400 Hz | 43 | 3.93 | | |
| 500 Hz | 37 | 4.26 | 16 | 5.62 |
| 630 Hz | 29 | 4.18 | | |
| 800 Hz | 24 | 4.44 | | |
| 1000 Hz | 13 | 3.11 | 8 | 5.56 |
| 1250 Hz | 17 | 4.97 | | |
| 1600 Hz | 16 | 5.85 | | |
| 2000 Hz | 12 | 5.38 | 6 | 8.87 |
| 2500 Hz | 11 | 6.30 | | |
| 3150 Hz | 11 | 6.30 | | |
| 4000 Hz | 10 | 9.45 | 5 | 13.63 |
| 5000 Hz | 8 | 9.42 | | |
| 6300 Hz | 5 | 7.27 | | |
| 800 Hz | 10 | 18.69 | 5 | 28.50 |
| 10000 Hz | 7 | 17.05 | | |

Table A-22 Model 831 Manual

Reverb Time - BK (Background or SNR)

- Background noise level impact on decay calculation
-T20 good when (Max Level) - (Background Level) $\geq 35 \mathrm{~dB}$
-T30 good when (Max Level) - (Background Level) $\geq 45 \mathrm{~dB}$

ISO 3382-2(2008) 5.2.1

Reverb Time = NL (Non-Linearity)

- Measures how well the decay follows a straight line
- Curved decays indicate mixed modes
- NL = 1000*(1-r2) where r^{2} is the correlation coefficient squared
-Straight line = 0\%
- Good = 0\% to 5\%

Reverb Time - Cu (Curvature)

- Compared T30 to T20 decay times
-Evaluate if decay times change as level decreases
- $\mathrm{Cu}=100$ * (T30/T20 - 1)
- Good $=0 \%$ to 5%

Reverb Time = SD (Standard Deviation)

- Estimate of uncertainty due to number of averages

$$
\begin{aligned}
& \text {-For T20, } S D=0.88 * T_{20} \sqrt{\frac{1+1.90 / n}{N * B * T_{20}}} \text { in seconds } \\
& \text {-For T30, } S D=0.55 * T_{30} \sqrt{\frac{1+1.52 / n}{N * B * T_{30}}} \text { in seconds }
\end{aligned}
$$

- $\mathrm{B}=$ filter bandwidth in Hz
- $\mathrm{n}=$ number of decays at each position
- $\mathrm{N}=$ number of independent measurement positions
- Model 831 report coefficient of variation = SD/RT as a percentage

Example

Precision grade T30 measurement

- 12 positions (N)
- 3 measurement / position (n)

Reverb Time - Spatial Averaging

Due to varying geometries and different acoustic absorption rates of materials, decay times can vary depending upon source and microphone location.

Table 1 - Minimum numbers of positions and measurements

	Survey	Engineering ${ }^{\text {a }}$	Precision
Source-microphone combinations	2	6	12
Source-positions ${ }^{\text {b }}$	$\geqslant 1$	$\geqslant 2$	$\geqslant 2$
Microphone-positions ${ }^{\text {c }}$	$\geqslant 2$	$\geqslant 2$	$\geqslant 3$
No. decays in each position (interrupted noise method)	1	2	3

Reverb Time - Arithmetic Averaging

RT60 for room = arithmetic average of individual decay times

Reverb Time - Ensemble Averaging

Individual decay beginnings are synchronized and the discrete sound pressure samples at each time interval are energy averaged

Model 831 - Quality Indicators

Quality Indicator	Good $=0$	Fair	Poor $=\mathrm{O}$
BT	$\mathrm{BT}>16$	n / a	$\mathrm{BT} \leq 16$
BK	$\mathrm{T}_{20} \geq 35 \mathrm{~dB}$ $\mathrm{~T}_{30} \geq 45 \mathrm{~dB}$	n/a	$\mathrm{T}_{20}<35 \mathrm{~dB}$ $\mathrm{~T}_{30}<45 \mathrm{~dB}$
NL	$\mathrm{NL} \leq 5 \%$	$5 \%<\mathrm{NL} \leq 10 \% \%$	$\mathrm{NL}>10 \%$
Cu	$0 \% \leq \mathrm{Cu} \leq 5 \%$	$5 \%<\mathrm{Cu} \leq 10 \%$ $-5 \%<\mathrm{Cu}<0 \%$	$\mathrm{Cu}>10 \%$ $\mathrm{Cu} \leq-5 \%$
SD	$\mathrm{SD} \leq 5 \%$	$5-\%<\mathrm{SD} \leq 10 \%$	$\mathrm{SD}>10 \%$

Ken Cox
Larson Davis Product Manager
kcox@pc b.com

